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Abstract
We study the onset of buoyancy convection induced in a horizontal layer of
a supercritical fluid heated from below. The physical situation, which we
investigate, is as follows: the initial fluid temperature is set above the critical
temperature. The following two cases are investigated: (a) the bottom surface
temperature is raised at time zero and (b) a constant heat flux is given from the
bottom surface at time zero. In both cases, the top surface temperature is kept
at the initial fluid temperature. First, we analyse the temperature propagations
on short time scales. We then investigate the onset conditions of buoyancy
convection by linear stability analysis, by which the critical Rayleigh number
and the critical wave number are obtained. We finally analyse the delay in the
onset of buoyancy convection and the wave number of the convection induced
in the supercritical fluid system. We find that power laws apply to the delay and
the wave number with respect to the deviation of the initial fluid temperature
from the critical temperature. The powers are, in fact, expressed by the critical
exponents of some physical properties. This result suggests that the critical
exponents can be estimated by measuring the onset times and wave numbers
of convection experimentally.

PACS numbers: 44.25.+f, 47.20.−k, 83.60.Wc, 47.54.+r

1. Introduction

As a fluid system approaches the critical point, physical properties such as the specific heat
and the isothermal compressibility diverge [1]. Because of the high specific heat, the thermal
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diffusivity is very low, which suggests that thermal energy cannot be transferred quickly by
thermal diffusion in critical fluids. It had been supposed that the temperature propagation
speed is very low in critical fluids under microgravity conditions due to the reduction of
both heat conduction and buoyancy convection. Unusual phenomena induced in critical
fluids have been observed under both terrestrial and microgravity conditions. Nitsche and
Straub [2] measured the specific heat at constant volume of SF6 near the critical point under
microgravity conditions. They observed fast temperature propagations even in microgravity.
The propagation speed of temperature was much higher than that of thermal diffusion. Straub
et al [3] carried out a spacelab experiment focusing on temperature propagations in critical
SF6, which was confined in a spherical container. After the temperature of the container wall
was raised by approximately 15 mK, the temperature of the fluid rose very quickly. The
temperature of the bulk fluid was almost constant and a very thin thermal boundary layer was
established near the wall. Onuki et al [4] and Boukari et al [5] analysed this fast temperature
propagation mechanism from a thermodynamical point of view. The temperature propagation
mode was also investigated from a thermofluid dynamical point of view [6–10]. Now it is
known that temperature propagates as acoustic waves in critical fluids, and this is called the
piston effect. The propagation speed is vwave = √

γ /(ρκT ), where γ , ρ and κT are the ratio of
specific heats, the density of a critical fluid and the isothermal compressibility, respectively.
The dispersion relation between the frequency and the wave number of temperature waves
under both terrestrial and zero-gravity conditions was also clarified [11].

Convection induced in critical fluids under terrestrial gravity conditions has also been
investigated both numerically and experimentally [12–33]. Since the temperature coefficient
of volume expansion increases and the thermal diffusivity decreases as fluids approach their
critical points, strong buoyancy convection may be induced due to the very high Rayleigh
number. The Prandtl number is also very large due to the very low thermal diffusivity, which
may cause completely different convective instabilities. Giterman and Shteinberg [12, 13]
studied convective instabilities in critical fluids and clarified the effect of Rayleigh–Bénard
and Schwarzschild instabilities on the onset of convection, based on which Amiroudine et al
[29] carried out numerical simulations of convection induced in a critical fluid confined in a
square cavity. Carlès [27] derived the dispersion relation between the growth rates and wave
numbers of perturbations as a function of time. The convective characteristics in critical fluids,
however, have not yet been well understood.

In this paper, we focus on the onset of buoyancy convection induced in a supercritical fluid.
The physical situation, which we investigate in this study, is illustrated in figure 1. A horizontal
layer of a critical fluid is sandwiched between two parallel plates. Gravity acts downwards.
The initial fluid temperature, Ti , is set above the critical temperature, Tc (figure 1(a)).
We analyse the following two cases: (a) the bottom surface temperature is raised to Tb

at t (time) = 0 (figure 1(b)); and (b) a constant heat flux, q, is given from the bottom
surface at t = 0 (figure 1(c)). In both cases, the top surface temperature is kept at the initial
fluid temperature, Ti . As we mentioned, the bulk temperature is raised quickly due to the
temperature wave propagations. Since the thermal diffusivity is very low, which is caused
by the large specific heat, the thermal boundary layers established at the top and bottom
surfaces do not grow fast. As a result, a temperature distribution as shown in figure 1(d) is
established in the early stages. In the following sections, we analyse the onset conditions and
flow features of buoyancy convection induced in the system explained above. In section 2,
we investigate the temperature propagations on short time scales. In section 3, we analyse
the onset of buoyancy convection by linear stability analysis. We obtain the critical Rayleigh
number and the critical wave number. In section 4, we investigate the dependence of the delay
in the onset of convection after the heat input and the wave number of convection on the initial
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Figure 1. Physical situations. (a) A supercritical fluid is sandwiched between two horizontal
plates. The initial fluid temperature, Ti , is set above the critical temperature, Tc . Gravitational
acceleration acts downwards. We investigate the following two cases: (b) the temperature of the
bottom surface is raised to Tb at t (time) = 0 and the top surface temperature is kept at Ti ; and (c) a
uniform heat flux, q, is given from the bottom surface at t = 0 and the top surface temperature is kept
at Ti . In both cases, the bulk temperature, Tbulk, is raised by the piston effect and thermal diffusion
layers are established at the bottom and top surfaces. (d) A snapshot of a typical temperature
distribution established in a supercritical fluid. The thicknesses of the thermal boundary layers, δB

and δT , do not grow fast because of the low thermal diffusivity.

system temperature. In the final section, we summarize the result, which we obtained in this
study.

2. Temperature propagations on short time scales

In this section, we analyse the temperature propagations on short time scales in the supercritical
fluid system shown in figure 1 for the following two cases: (a) the bottom surface temperature
is raised to Tb at t = 0 and (b) a constant heat flux, q, is given from the bottom surface at
t = 0. In both cases, the top surface temperature is fixed at the initial fluid temperature, Ti .
The bulk fluid temperature, Tbulk, is supposed to rise by the piston effect in the following ways.

(a) The bottom surface temperature is raised to Tb:

Tbulk = 1
2

{
(Tb + Ti) − (Tb − Ti) e− t

τb

}
. (1)

(b) A constant heat flux, q, is given from the bottom surface:

Tbulk = Ti +
qL

2λ

(
1 − e− t

τb

)
, (2)

where τb, L and λ are, respectively, the time constant for the bulk temperature to reach
(Tb + Ti)/2 (see equation (1)) or Ti + qL/2λ (see equation (2)), the depth of the fluid layer
and the thermal conductivity of the fluid. The purpose of the analysis in this section is to
estimate the time constant, τb, in terms of the initial system temperature, ε ≡ Ti − Tc, for the
analysis of convective instabilities induced in the critical fluid system, which will be carried
out in section 4. First of all, let us summarize the thermofluiddynamics equations [6, 11]:

• Continuity equation:
∂ρ

∂t
+

∂

∂xj

(ρvj ) = 0, (3)

where ρ and vj are, respectively, the density and the velocity.
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• Momentum equation:

ρ

(
∂vi

∂t
+ vj

∂vi

∂xj

)
= − ∂p

∂xi

+
∂σij

∂xj

+ ρgi, (4)

where p, gi and σij are, respectively, the pressure, the gravity vector and the viscous stress
tensor defined as follows:

σij ≡ η

(
∂vi

∂xj

+
∂vj

∂xi

− 2

3
δij

∂vk

∂xk

)
. (5)

Here, η is the dynamic viscosity, and the volume viscosity is not taken into account.
• Transport equation of temperature:

∂T

∂t
+ vj

∂T

∂xj

+
γ − 1

αP

∂vj

∂xj

= 1

ρcV

{
∂

∂xj

(
λ

∂T

∂xj

)
+ σij

∂vi

∂xj

}
, (6)

where T, γ , αP and cV are, respectively, the temperature, the ratio of specific heats, the
temperature coefficient of volume expansion and the specific heat at constant volume.

• Equation of state:

dp = 1

ρκT

dρ +
αP

κT

dT , (7)

where κT is the isothermal compressibility.

We express the physical properties in terms of ε as follows:

cP ∼ ε−α, cV ∼ ε−β, κT ∼ ε−γ , αP ∼ ε−, λ ∼ ε−�, η ∼ ε−χ . (8)

The actual values of cP , cV , κT , λ and η for the following numerical simulations are estimated
based on those of CO2 [34–37]. αP is calculated from the van der Waals equation. In this
case, α = 1.2 [34], β = 0.11 [35], γ = 1.2 [34],  = 1.0 (van der Waals), � = 0.6 [36] and
χ = 0.04 [37].

We solved numerically the above thermofluiddynamics equations by the control volume
method [38], in which a staggered mesh system was employed and nonuniform mesh intervals
were used so that the velocity, density, pressure and temperature fields near the boundaries
could be calculated. The temperature propagations on very short time scales (∼µs) are shown
in figure 2, where x = 0 and L (= 10 mm) correspond to the bottom and top surfaces,
respectively. Figure 2(a) shows snapshots of the temperature propagations when the bottom
surface temperature is raised by 10 mK at t = 0, while figure 2(b) shows those when a constant
heat flux of 100 W m−2 is given at t = 0. As is clearly seen, temperature waves are created and
travel between the two surfaces. Note that thermal diffusion layers at both surfaces are very
thin on such short time scales because of the high specific heat. The temperature is raised each
time the waves are reflected at the boundaries. The bulk temperature is raised, thanks to this
fast temperature wave propagation and finally reaches (Tb + Ti)/2 in the case of the constant
surface temperature conditions (see equation (1)) or Ti +qL/2λ in the case of the constant heat
flux conditions (see equation (2)). The time variations of the bulk temperature on millisecond
scales and the dependence of the time constant for the bulk temperature to reach (Tb + Ti)/2
or Ti + qL/2λ on the initial system temperature are shown in figure 3. The rising speed of the
bulk temperature increases and therefore the time constant decreases as the system approaches
the critical point when the bottom surface temperature is raised at time zero (figure 3(a)). On
the other hand, when a constant heat flux is given from the bottom surface at time zero, the
rising speed of the bulk temperature decreases as the initial system temperature approaches the
critical temperature (figure 3(b)). However, since the bulk temperature rise at the steady state
is lower due to the increase in the thermal conductivity (see equation (2)), the time constant in
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Figure 2. Temperature propagations on short time scales (∼µs). The initial system temperature is
100 mK above the critical temperature. The system depth is 10 mm. The top surface temperature
is kept at the initial system temperature. (a) The temperature of the bottom surface is raised by
10 mK; (b) a uniform heat flux of 100 W m−2 is given from the bottom surface.

the constant heat flux case also decreases as the system approaches the critical point. Power
laws apply to the time constant with respect to ε in both cases. The values of the powers are
the same irrespective of the differences in the boundary conditions.

Let us estimate the time constant theoretically. The third term on the left-hand side of
equation (6) accounts for temperature wave propagations, and thermal energy is injected by
diffusion via the first term on the right-hand side of equation (6). When the bottom surface
temperature is raised by Tb − Ti , the following thermal energy balance applies on very short
time scales, in which case the diffusion, dissipation, gravity and nonlinear convection terms
are not predominant:

−∂T

∂z

∣∣∣∣
z=0

≈ ρcV

λ

γ − 1

αP

|v|, (9)

where |v| is the amplitude of the velocity perturbation. Focusing on the wave propagations
on short time scales, in which case the diffusion, dissipation, gravity and nonlinear terms do
not have any significant effect, the relation between the amplitude of the velocity wave, |v|,
and that of the temperature wave, |T |, is obtained as follows from equations (3)–(7):

|v| = αP

γ − 1

√
γ

ρκT

|T |. (10)
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Figure 3. Time variations of the bulk temperature rise on millisecond scales and the dependence
of the time constant of the bulk temperature rises on the initial system temperature. The system
depth is 10 mm. (a) The temperature of the bottom surface is raised by 10 mK; (b) a uniform heat
flux of 100 W m−2 is given from the bottom surface.

From equations (9) and (10), the amplitude of the temperature wave on short time scales is
expressed as follows, assuming that the term −(∂T /∂z)z=0 in equation (9) is almost constant
on such short time scales so that the growth rate of the thermal diffusion layer, δ, is very low
and the amount of the temperature rise is very small:

|T | = λ

cV

√
κT

ργ
∼ ε

1
2 α+ 1

2 β− 1
2 γ−�. (11)

This shows that the amplitude increases as the system approaches the critical point. Since the
frequency of temperature wave reflections between the two boundaries, f , is f = vwave/L,
where vwave = √

γ /(ρκT ) is the temperature wave speed, the rate of the bulk temperature rise,
vT , and the time constant, τb, are obtained as follows:

vT = f × |T | ∼ λ

cV

∼ εβ−�, τb = Tb − Ti

2vT

∼ ε�−β. (12)

The time constant for the bulk temperature rise decreases as the system approaches the critical
point. The power, � − β, coincides with that obtained by the numerical simulation (see
figure 3(a)).

When a constant heat flux, q, is given at the bottom surface, the following relations are
derived in the same manner:

q = −λ
∂T

∂z

∣∣∣∣
z=0

≈ ρcV

γ − 1

αP

|v|. (13)
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Figure 4. Initial conditions. The fluid is at rest initially. The bulk temperature, Tbulk, is constant
and a linear temperature distribution is established in the thermal diffusion layer, the thickness of
which is δ. Gravity acts downwards.

From equations (10) and (13), the amplitude of the temperature wave is obtained as follows:

|T | = 1

cV

√
κT

ργ
∼ ε

1
2 α+ 1

2 β− 1
2 γ . (14)

The amplitude of the temperature wave decreases as the system approaches the critical point
as shown in figure 3(b). The rate of the bulk temperature rise, vT , and the time constant, τb,
are obtained as follows:

vT = f × |T | ∼ 1

cV

∼ εβ, τb = qL

2λvT

∼ ε�−β. (15)

The time constant for the bulk temperature rise also decreases as the system approaches the
critical point and coincides with that obtained by the numerical simulation (see figure 3(b)).
In other words, the assumptions made in the above theoretical analysis on such short time
scales are correct. The values of the powers are the same irrespective of the differences in the
boundary conditions (see equations (12) and (15)).

3. Onset conditions of buoyancy convection

In this section, we carry out a linear stability analysis of buoyancy convection of the system
described in section 1 (see figure 1). Here, we focus on the case when thermal convection
is induced by Rayleigh–Bénard instability in the thermal boundary layer. Whereas a linear
temperature distribution is established throughout the horizontal fluid layer by heat conduction
and convection occurs if the Rayleigh number exceeds the critical value in the case of normal
fluids [39], the temperature distribution as shown in figure 1(d) is established due to the piston
effect and the slow development of thermal diffusion layers in the case of supercritical fluids.
Because of the temperature distribution shown in figure 1(d), buoyancy convection may be
driven upwards from the bottom thermal boundary layer and downwards from the top thermal
boundary layer although the top surface is not externally cooled. The physical situations
analysed here are basically the same as those analysed by Carlès [27] and Khouri and Carlès
[33]. As we mentioned, Carlès [27] derived the dispersion relation between the growth rates
and the wave numbers of perturbations as a function of time. Amiroudine et al [29] carried out
numerical simulations of convection induced in a critical fluid in a square cavity heated from
below, but the flow patterns were definitely affected by the vertical walls because of the small
aspect ratio (horizontal width/vertical depth). In this section, on the other hand, we obtain the
marginal conditions of the onset of buoyancy convection from the bottom thermal boundary
layer of an infinite horizontal layer, that is, the critical Rayleigh number and the critical wave
number. The initial conditions are modelled as follows (see also figure 4): the initial velocity
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in the fluid is zero and the following initial temperature distribution, T0, is established:

T0 =
{− Tb−Tbulk

δ
z + Tb (0 � z � δ)

Tbulk(δ < z),
(16)

where Tb, Tbulk and δ are, respectively, the bottom surface temperature, the bulk fluid
temperature and the thickness of the thermal diffusion layer (see figure 4). Since we focus
on the onset of convection, in which case the time scales are much longer than those of the
temperature wave propagations, we omit the velocity divergence terms in equations (5) and
(6). Instead, we employ the Boussinesq approximation to take into account the buoyancy
effect. It was, in fact, proved theoretically that the piston effect does not have any influence
on the onset of buoyancy convection [25, 27]. We superimpose perturbations on the initial
velocity and temperature as follows:

vi = 0 + ṽi , T = T0 + T̃ (17)

where ∼ represents the perturbation. Substituting the velocity and temperature
values (equation (17)) in the thermofluiddynamics equations, employing the Boussinesq
approximation and omitting the velocity divergence terms and the second-order perturbation
terms, the following nondimensional linear equations are derived [39]:

∂

∂τ
(∇2VZ) = ∇4VZ +

Ra

Pr
∇2

IIθ, (18)

where ∇2
II is the two-dimensional Laplacian on the horizontal plane.

∂θ

∂τ
=

{
VZ + 1

Pr
∇2θ (0 � Z � 1)

1
Pr

∇2θ (1 < Z).
(19)

In equations (18) and (19), the coordinate xi , the time t, the z-component of the velocity, ṽz,
and the temperatureT̃ are nondimensionalized as follows:

Xi ≡ xi

δ
, τ ≡ t

δ2/ν
, VZ ≡ ṽz

ν/δ
, θ ≡ T̃

Tb − Tbulk
, (20)

where ν ≡ η/ρ is the kinematic viscosity. Note that the thickness of the thermal diffusion
layer, δ, is used as the characteristic length for the nondimensionalization. Pr and Ra in
equations (18) and (19) are, respectively, the Prandtl number and the Rayleigh number:

Pr ≡ ν

a
, Ra ≡ αP gT δ3

aν
, (21)

where a and g are the thermal diffusivity and the gravitational acceleration, respectively, and
T ≡ Tb − Tbulk. Note that, as we explained, the Rayleigh number is defined using δ.

We carry out harmonic analysis based on the following solutions for the velocity and
temperature perturbations:(

VZ

θ

)
=

(
V (Z)

�(Z)

)
exp(στ − iKXX − iKY Y), (22)

where KX and KY are, respectively, the X- and Y-components of the nondimensional wave
numbers (KX ≡ kxδ,KY ≡ kyδ, where kx and ky are the wave numbers) and σ = σR + iσI.
Substituting equation (22) in the governing equations (18) and (19), the following equations
are obtained:

{σ(D2 − K2) − (D2 − K2)2}V +
Ra

Pr
K2� = 0, (23)
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V −
{
σ − 1

Pr
(D2 − K2)

}
� = 0 (0 � Z � 1){

σ − 1

Pr
(D2 − K2)

}
� = 0 (1 < Z),

(24)

where D ≡ d/dZ and K2 ≡ K2
X + K2

Y . The boundary conditions are

V = DV = 0, θ = 0 at Z = 0,∞. (25)

We expand V and � by the trial functions fi(Z) and gi(Z):

V (Z) =
∑

i

αifi(Z), �(Z) =
∑

i

βigi(Z), (26)

where αi and βi are the coefficients. We use the following functions for fi(Z) and gi(Z) to
satisfy the boundary conditions:

fi(Z) = Zi+1 e−Z, gi(Z) = Zi e−Z. (27)

Substituting equation (26) in equations (23) and (24) and employing the Galerkin method, the
following eigenvalue matrix equation is obtained:

A−1
3 (σA1 + A2)B

−1
1 (P rσB2 + B3)β = Raβ, (28)

where Ra is the eigenvalue and β ≡ (β1, β2, β3, . . .)
T is the eigenvector. Matrices A1, A2,

A3, B1, B2 and B3 are defined as follows:

A1 ≡
∫ ∞

0
(Dδfm)(Dfi) dZ + K2

∫ ∞

0
δfmfi dZ,

A2 ≡
∫ ∞

0
(D2δfm)(D2fi) dZ + 2K2

∫ ∞

0
(Dδfm)(Dfi) dZ + K4

∫ ∞

0
δfmfi dZ,

A3 ≡ K2
∫ ∞

0
δfmgi dZ, B1 ≡

∫ 1

0
δgmfi dZ, B2 ≡

∫ ∞

0
δgmgi dZ,

B3 ≡
∫ ∞

0
(Dδgm)(Dgi) dZ + K2

∫ ∞

0
δgmgi dZ.

At the neutral state, σR = 0. We calculated the critical Rayleigh number changing σI under
different combinations of the Prandtl number, Pr, and wave number, K, and found that σI = 0
always gives the minimum Rayleigh number. In other words, overstability does not occur at
the marginal state. The neutral curve for σI = 0 is shown in figure 5, where the minimum value
gives the critical Rayleigh number, and the wave number corresponding to the critical Rayleigh
number is the critical wave number. We expanded the solutions using up to 12 trial functions
(see equations (26) and (27)) and confirmed that the significant figure of 3 was achieved in both
the critical Rayleigh number and the critical wave numbers. The critical Rayleigh number,
Rac, and the corresponding nondimensional critical wave number, Kc, are, respectively, 0.434
and 0.356. The isotherms obtained from the temperature eigenvectors are shown in figure 6.
Very narrow thermal plumes are driven from the boundary layer once the Rayleigh number
reaches the critical value. Note that in the case of an infinite horizontal layer of a normal
fluid sandwiched between two rigid walls, the critical Rayleigh number and the critical wave
number are approximately 1708 and 3.117, respectively, where the Rayleigh number and
the wave number are nondimensionalized using the distance between the two plates [39].
Let us estimate the thickness of the boundary layer, δ, when thermal convection occurs in
supercritical CO2. When, for instance, Ti − Tc = 1000 mK and Tb − Tbulk = 10 mK, δ ≈
0.62 µm and therefore the wavelength between neighbouring plumes, λplume = 2 πδ/Kc,
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Figure 5. Neutral curve. The minimum value gives the critical Rayleigh number, Rac , and the
corresponding wave number is the critical wave number, Kc; Rac = 0.434 and Kc = 0.356.

Figure 6. Isotherms of thermal plumes calculated from the temperature eigenvector. Plumes of a
short wavelength are driven from the thermal boundary layer.

is approximately 11 µm. When Ti − Tc = 100 mK, and Tb − Tbulk = 10 mK, δ ≈
0.18 µm and λplume ≈ 3.3 µm. The above examples show that as long as the gap between the
top and bottom surfaces is not of the order of micrometres, buoyancy convection occurs from
the thermal boundary layers before a linear temperature distribution is established across the
whole fluid layer [25, 27, 33].

4. Convective characteristics

In this section, we analyse the convective characteristics induced in supercritical fluids. As we
explained, the physical situation is as follows (see figure 1). The initial fluid temperature is
Ti , which is slightly higher than the critical temperature Tc. The bottom surface temperature
is raised to Tb or a uniform heat flux, q, is given from the bottom surface at time zero, and
in both cases the top surface temperature is kept at the initial fluid temperature. The bulk
fluid temperature is raised by the piston effect (see section 2) and the thermal boundary layers
at the top and bottom surfaces grow very slowly due to the low thermal diffusivity. Under
the above circumstances, thermal convection is driven upwards from the bottom boundary
layer and downwards from the top boundary layer once the onset conditions are satisfied. In
general, thermal convection occurs when the corrected Rayleigh number, RaCorr, reaches the
critical Rayleigh number, Rac, in critical fluids [25, 29, 30, 32]:

RaCorr ≡ Ra ×
(

1 − ag

δ

T

)
= Rac, (29)

where ag ≡ (∂T /∂p)Sρg = gαP T /cP [40]. However, as we showed in section 3, the
thickness of the thermal boundary layer, δ, is very short and, as a result, the correction term,
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agδ/T , becomes much smaller than 1 [29, 32]. Therefore, in this study, we assume that the
correction term can be omitted as far as the onset of convection from thin boundary layers
is concerned [25] and that buoyancy convection is induced when the Rayleigh number Ra
reaches the critical Rayleigh number Rac.

The temperature difference between the bottom surface and the bulk fluid, TB ≡
Tb − Tbulk, changes with time and the thickness of the bottom thermal boundary layer, δB ,
increases with an increase in time. Therefore, when the Rayleigh number reaches the critical
value, Rac, buoyancy convection occurs upwards from the bottom boundary layer:

RaB ≡ αP gTBδ3
B

aν
= Rac, (30)

where Rac is the critical Rayleigh number, which we obtained in section 3. The wave number
of buoyancy convection from the bottom boundary layer is

kB,c ≡ Kc

δB

, (31)

where Kc is the nondimensional critical wave number, which we also obtained in section 3.
Let us focus on thermal convection from the top surface. Both the temperature difference
between the bulk fluid and the top surface, TT = Tbulk − Ti , and the thickness of the top
thermal boundary layer, δT , increase with time, and when the Rayleigh number reaches the
critical value, buoyancy convection occurs downwards from the top boundary layer:

RaT ≡ αP gTT δ3
T

aν
= Rac. (32)

The wave number of convection from the top boundary layer is

kT,c ≡ Kc

δT

. (33)

4.1. Buoyancy convection when the bottom surface temperature is raised

First, we analyse the convective characteristics when the bottom surface temperature is raised
to Tb at time zero (see figure 1(b)). Since the temperature of the bulk fluid, Tbulk, is raised
by the piston effect as shown in equation (1), the temperature difference between the bottom
surface and the bulk fluid, TB = Tb − Tbulk, and that between the bulk fluid and the top
surface, TT = Tbulk − Ti , change with time as follows:

TB ≡ Tb − Tbulk = 1
2 (Tb − Ti)

(
1 + e− t

τb

)
, (34)

TT ≡ Tbulk − Ti = 1
2 (Tb − Ti)

(
1 − e− t

τb

)
, (35)

where τb is the time constant (see equation (12)). We estimate the onset of buoyancy convection
from the bottom and top boundary layers based on equations (30)–(33). The thermal diffusivity,
a, and the thickness of a thermal boundary layer, δ, are expressed as follows:

a ≡ λ

ρcV

∼ εβ−�, δ ∼ √
at ∼ ε

1
2 (β−�)t

1
2 . (36)

Substituting αP (equation (8)), TB (equation (34)), TT (equation (35)), a (equation (36))
and δ (equation (36)) in equations (30) and (32), the time variations of the Rayleigh numbers
are expressed as follows:

RaB ∼ αP TBδ3
Ba−1ν−1 ∼ αP δ3

Ba−1ν−1 ∼ ε
1
2 β− 1

2 �−+χ t
3
2 , (37)
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RaT ∼ αP TT δ3
T a−1ν−1 ∼ αP δ3

T a−1ν−1 ∼ ε
1
2 β− 1

2 �−+χ t
3
2 , (38)

where e−t/τb ≈ 0 is applied since τb is of the order of 0.01 s (see figure 3(a)) and the onset
time of convection is of the order of several seconds [29, 31]. The Rayleigh numbers RaB and
RaT increase with time and when the Rayleigh numbers reach the critical number Rac, which
we obtained in section 2, buoyancy convection occurs. Therefore, the onset time of thermal
convection from the bottom boundary layer, tB , and that from the top boundary layer, tT , are
expressed as follows:

tB ∼ ε− 1
3 β+ 1

3 �+ 2
3 − 2

3 χ , (39)

tT ∼ ε− 1
3 β+ 1

3 �+ 2
3 − 2

3 χ . (40)

Thus, we obtained power relations between the onset times of thermal convection from the
bottom and top boundary layers, tB and tT , and the difference between the initial system
temperature and the critical temperature, ε. The powers are the same for both tB and tT .
Generally speaking, the onset time of buoyancy convection is delayed more and more as the
system temperature deviates from the critical temperature. From equations (31) and (33), the
wave numbers of buoyancy convection from the bottom and top boundary layers, kB,c and
kT,c, are obtained as follows:

kB,c ∼ δ−1
B ∼ ε

1
2 (�−β)t

− 1
2

B ∼ ε− 1
3 β+ 1

3 �− 1
3 + 1

3 χ , (41)

kT,c ∼ δ−1
T ∼ ε

1
2 (�−β)t

− 1
2

T ∼ ε− 1
3 β+ 1

3 �− 1
3 + 1

3 χ . (42)

Power laws also apply to the wave numbers with respect to ε. The wave number increases
as the system approaches the critical point. In other words, the wavelength between plumes
becomes shorter as the initial system temperature approaches the critical temperature.

4.2. Buoyancy convection when a constant heat flux is given from the bottom surface

Let us investigate the flow features when a uniform heat flux, q, is given from the bottom
surface at time zero (see figure 1(c)). In this case, the difference between the bottom surface
temperature, Tb, and bulk temperature, Tbulk, increases following Fourier’s law as follows:

TB ≡ Tb − Tbulk = q

λ
δB. (43)

Since the bulk temperature is supposed to change as shown in equation (2), the temperature
difference between the bulk fluid and the top surface, TT = Tbulk − Ti , changes with time as
follows:

TT ≡ Tbulk − Ti = qL

2λ

(
1 − e− t

τb

)
. (44)

We can again estimate the onset of thermal convection from the bottom and top boundary layers
based on equations (30)–(33). The time variations of the Rayleigh numbers are expressed as
follows:

RaB ∼ αP TBδ3
Ba−1ν−1 ∼ αP qλ−1δBδ3

Ba−1ν−1 ∼ εβ−+χqt2, (45)

RaT ∼ αP TT δ3
T a−1ν−1 ∼ αP qλ−1tτ−1

b δ3
T a−1ν−1 ∼ ε

3
2 β− 1

2 �−+χqt
5
2 , (46)

where e−t/τb ≈ 1 − t/τb is applied since τb is very large (see figure 3(b)) compared to the
onset time of convection [29, 31]. Therefore, the onset time of buoyancy convection from the
bottom boundary layer, tB , and that from the top boundary layer, tT , are obtained as follows:

tB ∼ q− 1
2 ε− 1

2 β+ 1
2 − 1

2 χ , (47)

tT ∼ q− 2
5 ε− 3

5 β+ 1
5 �+ 2

5 − 2
5 χ . (48)
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From equations (31) and (33), the wave numbers of buoyancy convection from the bottom and
top boundary layers, kB,c and kT,c, respectively, are obtained as follows:

kB,c ∼ δ−1
B ∼ ε

1
2 (�−β)t

− 1
2

B ∼ q
1
4 ε− 1

4 β+ 1
2 �− 1

4 + 1
4 χ , (49)

kT,c ∼ δ−1
T ∼ ε

1
2 (�−β)t

− 1
2

T ∼ q
1
5 ε− 1

5 β+ 2
5 �− 1

5 + 1
5 χ . (50)

Thus, we also derived power relations. The onset time of thermal plumes and the wave number
decrease as the initial system temperature approaches the critical temperature.

In summary, power laws apply to the onset times of thermal convection from the bottom
and top boundary layers and to the wave numbers of convection with respect to ε ≡ Ti − Tc

in both constant temperature and constant heat flux cases. The powers are expressed by the
critical exponents of several physical properties. Thermal plumes of large wave numbers
induced from the bottom surface have been observed by numerical simulations [22, 29–32]
and those from the top surface have also been shown numerically [22, 29–31]. Convective
instabilities are affected by side walls. The critical Rayleigh number is, in general, raised
when the aspect ratio of the fluid layer (width/height) becomes low. But since the wavelength
between the thermal plumes is very short in the case of critical fluids, the side wall or end
effect may not be so serious as the ordinary Rayleigh–Bénard instability. As is well known, a
direct measurement of physical properties of near-critical fluids under terrestrial gravitational
conditions is very difficult due to the piston effect, gravity and thermal convection. However,
the above power relations suggest that the critical exponents of some physical properties
can be estimated by measuring the onset times and wave numbers of thermal plumes driven
from the bottom and top thermal boundary layers. What is more, the present analysis can
be easily extended to different heating conditions by changing the boundary conditions (see
equations (1) and (2)), in which case the values of the powers may be changed. According
to our recent preliminary experiment using supercritical CO2, a power relation between the
delay in the onset of buoyancy plumes and ε and another relation between the wave number
and ε can be clearly observed, the result of which will be presented soon. We should mention
that the power laws may not apply when the system temperature is very close to the critical
temperature since the macroscopic thermodynamic treatment may not be valid any more. The
power laws also disappear when the initial system temperature is set far from the critical
temperature, in which case a linear temperature distribution is established across the fluid
layer due to the fast thermal diffusion and therefore the present situation is changed to an
ordinary Rayleigh–Bénard problem.

5. Conclusions

We theoretically studied convective instability induced in a horizontal layer of a critical fluid
and obtained the following results. (a) We carried out linear stability analysis of the onset of
thermal convection in a critical fluid system and obtained the critical Rayleigh number, Rac,
and the critical nondimensional wave number, Kc; Rac = 0.434 and Kc = 0.356, where the
Rayleigh number and the wave number are nondimensionalized by the thickness of the thermal
boundary layer. (b) We investigated the delay in the onset of convection and the actual wave
number of thermal convection induced in the fluid layer and found that the following power
laws apply to the delay and the wave number depending on the initial thermal conditions:
(1) the case when the bottom wall temperature is raised at time zero: tB ∼ tT ∼
ε− 1

3 β+ 1
3 �+ 2

3 − 2
3 χ , kB,c ∼ kT,c ∼ ε− 1

3 β+ 1
3 �− 1

3 + 1
3 χ , where tB is the delay in the onset of thermal

convection from the bottom thermal boundary layer; tT is the delay in the onset of thermal
convection from the top boundary layer; kB,c is the wave number of thermal convection
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from the bottom boundary layer; kT,c is the wave number of thermal convection from the top
boundary layer; β, �,  and χ are the critical exponents of the specific heat at constant volume,
the thermal conductivity, the temperature coefficient of volume expansion and the kinematic
viscosity, respectively; and ε is the difference between the initial fluid temperature and the
critical temperature; (2) the case when a constant heat flux is given from the bottom wall
at time zero: tB ∼ q− 1

2 ε− 1
2 β+ 1

2 − 1
2 χ , tT ∼ q− 2

5 ε− 3
5 β+ 1

5 �+ 2
5 − 2

5 χ , kB,c ∼ q
1
4 ε− 1

4 β+ 1
2 �− 1

4 + 1
4 χ ,

kT,c ∼ q
1
5 ε− 1

5 β+ 2
5 �− 1

5 + 1
5 χ , where q is the heat flux from the bottom surface. The power

relations suggest that the critical exponents of some physical properties can be estimated by
measuring the onset times and wave numbers of thermal plumes driven from the bottom and
top thermal boundary layers. The present analysis can be easily extended to different heating
conditions, depending on which different powers are obtained.
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